

COHERENT: future plans

R. Tayloe, Indiana U. for the COHERENT collaboration SNS STS workshop, July 2019

COHERENT experiment in SNS v-alley

- Low-background area
- near (20-28 m) SNS target with
- 1.4MW, 5000MW/yr, 1.5E23POT/yr,
- pulsed beam

SNS v energy spectrum

SNS v time distribution

COHERENT experiment in SNS v-alley

First detection of CEvNS with CsI

COHERENT experiment in SNS v-alley

CENNS-10 (LAr), currently running, to demonstrate N² dependence of CEvNS

The CENNS-10 (LAr) Detector:

Specs:

- Built at FNAL, moved to ORNL Fall 16
- 22 kg LAr fiducial volume
- 2 × Hamamatsu 8"PMTs
- TPB-coated PMTs/teflon side walls
- Energy threshold ≈ 20keVnr
- Pb/Cu/H2O shield
- Running in current configuration since 7/17
- Expect ≈140 CEvNS events/SNS-year

Eng. run CEvNS cross section limits

COHERENT future, next steps

Physics reach of CEvNS:

- Understanding supernovae (SN):
 - Expected to be important in core-collapse SN and
 - possible SN detection channel.
- Nuclear Physics: nuclear form factors
- Standard Model tests, eg: NSI, $\sin^2 \theta_w$, neutrino magnetic moments
- ν oscillations: Investigation of ν_{sterile} oscillations
- reactor monitoring (non-proliferation)
- Dark Matter:
 - Important background for O(10-ton) direct searches
 - detectors sensitive for accelerator produced DM.

This requires:

- higher event rates via
 larger detetectors, lower thresholds
- reduced systematics via low backgrounds, measured flux

for a complete CEvNS physics program.

COHERENT future, next steps

SNS is excellent source for this. Need well-shielded space close to target

COHERENT future, next steps

A variety of nuclei are being considered as larger detectors.

event rates/kg/SNS-yr for LAr Nal

COHERENT future, in v-alley

- 16kg Ge array, coming soon
- multi-ton Nal, shielding/veto configuration to be finalized
- ton-scale LAr (CENNS-750), funding pending
- D₂O for flux normalization
- also NIN cubes
- neutron background measurements

COHERENT future, in v-alley

- 16kg Ge array, coming soon
- multi-ton Nal, shielding/veto configuration to be finalized
- ton-scale LAr (CENNS-750), funding pending
- D₂O for flux normalization
- also NIN cubes
- neutron background measurements

COHERENT future in nu-alley, D₂O detector

- D₂O reduces flux normalization systematic, from ~10% to ~3%
 - 1.3 tons D2O within acrylic inner vessel
 - H2O "tail catcher" for high energy e-
 - Outer light water vessel contains PMTs, PMT support structure, and optical reflector.
 Outer steel vessel to support shielding and veto

Hg TARGET

SHIELDING MONOLITH

CONCRETE AND GRAVEL

MARS

Ge ARRAY

CENNS-750

NIN Cubes

PROTON BEAM

COHERENT future, large LAr detector

CENNS-750:

- Based on our experience with CENNS-10 detector, running since 2017.
- Single-phase LAr (scintillation-only) calorimeter, 750/610kg total/fiducial
- Purpose-designed cryostat w/LN2 precool, and dual cryocooler for liquification/gas purification.
- Light collection: TPB coated reflectors combined with 3"PMTs/SiPMs
- Eventual use of underground (low ³⁹Ar) argon.

⇒ 3000 CEvNS, 440 inelastic CC/NC events/yr!

COHERENT future, large LAr detector CENNS-750:

CENNS-750 LAr detector

event rates in 610kg fiducial LAr detector:

~3000 CEvNS events/year

simulated CEvNS + background rates

~440 inelastic CC/NC events/yr

estimated inelastic CC/NC CEvNS rates

Search for accelerator-produced, low-mass, dark matter

Via:

$$p \to \mathrm{Hg} \to \pi^{0,\pm}$$

$$\pi^0 \longrightarrow \gamma + V^{(*)} \longrightarrow \gamma + \chi^{\dagger} + \chi$$

1 ton-year LAr SNS DM sensitivity

Light new physics in coherent neutrino-nucleus scattering experiments

Patrick deNiverville, ¹ Maxim Pospelov, ^{1, 2} and Adam Ritz¹

¹ Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2, Canada

² Perimeter Institute for Theoretical Physics, Waterloo, ON N2J 2W9, Canada

(Dated: May 2015)

arXiv:1505.07805

Search for accelerator-produced, low-mass, dark matter

Via:

$$p \to \mathrm{Hg} \to \pi^{0,\pm}$$

$$\pi^0 \longrightarrow \gamma + V^{(*)} \longrightarrow \gamma + \chi^{\dagger} + \chi$$

Dark Matter Small Projects New Initiatives

Summary of the High Energy Physics Workshop on Basic Research Needs for Dark Matter Small Projects New Initiatives October 15 – 18, 2018

PRD 1: Create and detect dark matter particles below the proton mass and associated forces, leveraging DOE accelerators that produce beams of energetic particles.

Create & Detect Dark Matter at Accelerators

Search for accelerator-produced, low-mass, dark matter

10-ton LAr or ~20ton cryogenic Nal detector downstream (ideally) from high power neutron target, eg SNS STS

R. Tayloe, SNS STS workshop

Search for accelerator-produced, low-mass, dark matter

10-ton LAr or ~2-ton cryogenic Nal detector downstream (ideally) from high power neutron target, eg SNS STS

multi-ton Nal

88888

FIDUCIAL VOL =

pi/4(2.08m)³ = 7.07m³ = 9895kg = 10.9tons

Will enable other CEvNS physics as well!

Large CEvNS detector for DM

Proposal submitted to design large LAr/cooled Nal detector for accelerator-DM search at SNS, with R&D and design/planning components

COHERENT future, summary

- SNS v-alley offers substantial CEvNS physics program in near-future
- SNS STS with dedicated detector hall with optimized location and shielding would be a world-class v facility

